Running on Empty 10
after the testing. In addition, the time of day when the respective groups
took the tests may have influenced the results: those in the 24-hour
group took the tests in the morning and may have been fresher and more
relaxed than those in the 12-hour group, who took the tests at night.
Perhaps, then, the motivation level of food-deprived participants could
be effectively tested. Second, longer-term food deprivation periods, such
as those experienced by people fasting for religious reasons, could be
explored. It is possible that cognitive function fluctuates over the duration
of deprivation. Studies could ask how long a person can remain focused
despite a lack of nutrition. Third, and perhaps most fascinating, studies
could explore how food deprivation affects learned industriousness. As
stated above, one possible explanation for the better perseverance times
in the 24-hour group could be that they spontaneously improved their
perseverance faculties by simply forcing themselves not to eat for 24
hours. Therefore, research could study how food deprivation affects the
acquisition of perseverance.
In conclusion, the results of this study provide some fascinating
insights into the cognitive and physiological effects of skipping meals.
Contrary to what we predicted, a person may indeed be very capable of
concentrating after not eating for many hours. On the other hand, if one
is taking a long test or working long hours at a tedious task that requires
perseverance, one may be hindered by not eating for a short time, as
shown by the 12-hour group’s performance on the perseverance task.
Many people—students, working mothers, and those interested in fasting,
to mention a few—have to deal with short-term food deprivation,
intentional or unintentional. This research and other research to follow
will contribute to knowledge of the disadvantages—and possible
advantages—of skipping meals. The mixed results of this study suggest
that we have much more to learn about short-term food deprivation.
The conclusion
summarizes the
outcomes, stresses the
experiment’s value, and anticipates
further advances on
the topic.
Running on Empty 11
References
Costa, A. L. (1984). Thinking: How do we know students are getting better
at it? Roeper Review, 6, 197–199.
Crumpton, E., Wine, D. B., & Drenick, E. J. (1966). Starvation: Stress
or satisfaction? Journal of the American Medical Association, 196,
394–396.
D’Agostino, C. A. F. (1996). Testing a social-cognitive model of
achievement motivation.-Dissertation Abstracts International Section
A: Humanities & Social Sciences, 57, 1985.
Eisenberger, R., & Leonard, J. M. (1980). Effects of conceptual task
difficulty on generalized persistence. American Journal of Psychology,
93, 285–298.
Green, M. W., Elliman, N. A., & Rogers, P. J. (1995). Lack of effect of
short-term fasting on cognitive function. Journal of Psychiatric
Research, 29, 245–253.
Green, M. W., Elliman, N. A., & Rogers, P. J. (1996). Hunger, caloric
preloading, and the selective processing of food and body shape
words. British Journal of Clinical Psychology, 35, 143–151.
Green, M. W., Elliman, N. A., & Rogers, P. J. (1997). The study effects of
food deprivation and incentive motivation on blood glucose levels
and cognitive function. Psychopharmacology, 134, 88–94.
Hickman, K. L., Stromme, C., & Lippman, L. G. (1998). Learned
industriousness: Replication in principle. Journal of General
Psychology, 125, 213–217.
Keys, A., Brozek, J., Henschel, A., Mickelsen, O., & Taylor, H. L. (1950).
The biology of human starvation (Vol. 2). Minneapolis: University of
Minnesota Press.
Kollar, E. J., Slater, G. R., Palmer, J. O., Docter, R. F., & Mandell, A. J.
(1964). Measurement of stress in fasting man. Archives of General
Psychology, 11, 113–125.
Pinel, J. P. (2000). Biopsychology (4th ed.). Boston: Allyn and Bacon.
All works referred to
in the paper appear on
the reference page, listed
alphabetically by author (or title).
Each entry follows APA
guidelines for listing
authors, dates,
titles, and publishing
information.