+1 (208) 254-6996 [email protected]

FGIC2019 FGIC 2nd Conference on Governance and Integrity 2019 Volume 2019

Conference Paper

Don't use plagiarized sources. Get Your Custom Essay on
FGIC2019 FGIC 2nd Conference on Governance and Integrity 2019 Volume 2019
Just from $13/Page
Order Essay

An Analytic Hierarchy Process Approach in Decision-Making for Material Selection in an Automotive Company: A Case Study Cheng Jack Kie, Ahmed Khalif Hassan, Norhana Mohd Aripin, and Rafiuddin Mohd Yunus Faculty of Industrial Management, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang

Abstract This study is an approach to investigate and to choose the suitable material for the fabrication of tools trolley to ensure the good quality of the product. The project team of an automotive manufacturing company is planning to fabricate 100 sets of tools trolley in the assembly shop. This study was developed to describe an approach based on Analytic Hierarchy Process (AHP) that can assist decision-makers and continuous improvement engineers in determining the most suitable material to be employed in fabrication process at the early stage of the product development to reduce the cost. The selected main criteria are Material Strength, Material Cost, Procurement Lead Time and Duration of Fabrication Process while the four materials that will be considered in this study are Aluminium, Steel Tube, and Square Tube. Finally, the results show that Square Tube is recommended as the most suitable material for the in-house tools for trolley fabrication.

Keywords: analytic hierarchy process, decision-making, continuous improvement, fabrication process.

1. Introduction

Material process selection is a method to determine the most suitable material to fabricate a product. Many researchers have agreed on the importance of material selection process, especially during the early stage of the product development phase. Determining the most suitable and appropriate material in the early stage can avoid additional cost if changes are needed to be carried out after the early stage of the product development process (Ravisankar, Balasubramanian & Muralidharan, 2004). However, it is a difficult task with a complex decision because various factors have to be considered during the process.

Analytic Hierarchy Process (AHP) is a tool that can be used at the conceptual design stage in the product development process (Hambali et al., 2010; Subramanian &

How to cite this article: Cheng Jack Kie, Ahmed Khalif Hassan, Norhana Mohd Aripin, and Rafiuddin Mohd Yunus, (2019), “An Analytic Hierarchy Process Approach in Decision-Making for Material Selection in an Automotive Company: A Case Study” in FGIC 2nd Conference on Governance and Integrity 2019, KnE Social Sciences, pages 472–484. DOI 10.18502/kss.v3i22.5067

Page 472

Corresponding Author:

Cheng Jack Kie

[email protected]

Received: 5 August 2019

Accepted: 14 August 2019

Published: 18 August 2019

Publishing services provided by

Knowledge E

Cheng Jack Kie et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are


Selection and Peer-review under

the responsibility of the

FGIC2019 Conference





Ramanathan, 2012). According to Vaidya and Kumar (2006), AHP is widely implemented for selection and evaluation based decision-making, usually in the area of manufac- turing, engineering, healthcare, education, and many more. AHP has been used to solve multi-criteria decision-making problems based on experience and skills of the experts by determining the factors that impacted the decision process (Subramanian & Ramanathan, 2012). The tools trolley which acts to transport tools and small parts safety is generally made from few materials such as stainless steel, carbon steel, aluminum, iron, and copper. Each material has different material strength, material lead time, and the price of the material can be very expensive to manipulate the cost. In the fabrication process, there are many processes involved with different amounts of costs of material and equipment, quality of material, and fabricating time (Kalpakjian and Schmid, 2014). In an automotive manufacturing industry, the fabrication process gives the Continuous Improvement (CI) Engineers different types of problems, where the selection of appropriate material is one of the critical issues. By doing this study, the problem faced by the engineers is solved using AHP. This technique will assist in determining the most appropriate material to fabricate the tools trolley, which will meet the product’s specifications and requirements. Thus, the main focus of this study is to explore the potential use of AHP in assisting CI projects to evaluate and determine the most appropriate material for producing tools trolley in an automotive company. Besides that, this paper briefly reviews the concepts and applications of multiple criterion decision analysis.

This paper is organized into five sections where after the broad introduction was firstly discussed in Section 1. The literature of past studies related to AHP and Continuous Improvement are presented in Section 2. Next, the chosen methodology, which is AHP, will be elaborated in Section 3 while Section 4 encompassed results and discussion. Then, a conclusion with the point of discussion on limitations and suggestion for future studies are provided in the last section of this paper.

2. Literature Review

In order to make a good decision, the decision-maker must be able to first define the problem, the need, and purpose of the decision, then using this information to develop criteria that can be used to evaluate the potential alternative actions to take. The beauty of Analytic hierarchy process and continuous improvement are discussed in the following section, respectively.

DOI 10.18502/kss.v3i22.5067 Page 473




2.1. Analytic hierarchy process

Dweiri and Al-Oqla (2006) mentioned that the Analytic Hierarchy Process (AHP) is one of the multi-criteria decision-making tools that incorporated the behavior of its decision- maker in the decision model. Professor Thomas L. Saaty developed AHP techniques in the 1970s to improve the decision-making process when multiple criteria are involved in the process. Since then, the method is widely used, refined, and studied. AHP technique is one of the most commonly used multi-criteria decision methods in decision making (Subramanian & Ramanathan, 2012). The main flexibility of this method is AHP considered a systematic approach that includes both the tangible and intangible factors and finally provides a structured solution to problems in the industries.

The advantages of AHP method is the technique uses both qualitative data collected from judgment values which based on experience and intuition apart from quantitative data of a problem (Subramanian & Ramanathan, 2012; Vaidya & Kumar, 2006). Besides that, the application of AHP allows the investigated problems to be broken down hierarchically where a set of criteria will be arranged in a hierarchy order so that it can be evaluated subjectively based on the importance according to scores or weights. To develop an AHP model, there are three important phases which are problem structuring, judgments comparison, and analyzing priorities. In the structuring phase, a decision- making model is developed and then is transposed to a hierarchy form. Then, for each alternative obtained will be evaluated according to the criterion’s weight in the judgment phase.

A hierarchy can be used to study the interaction of its components and how these interactions impact the whole system. Therefore a hierarchy is one form of abstraction or representation of a system’s structure (Hambali et al., 2010). Hierarchies work by separating the reality of human thinking into several sets and subsets. The decision making alternatives can be rated once weights are assigned to the developed hierarchy. Weights are assigned through expert comparison using judgment scale. These scales are usually ranged from 1 (equally preferred) to 7 (extremely preferred). These numerical values represent the intensity of the alternatives compared to criteria.

Order your essay today and save 10% with the discount code ESSAYHELP