+1 (208) 254-6996 [email protected]
Select Page

i need someone to write the answers on word i already solved

Please solve each question in the space provided. You should give the details of your solutions and not just the final results.

Don't use plagiarized sources. Get Your Custom Essay on
Math
Just from \$13/Page

Q-1: [3+2 marks] Let g(s) = s 2 + 4 and h(s) = s 2 â€” 4. a) Describe the domain of h(s). b) Find h(g (s)) , simplify your answer.

CL) DOMOkibil h (5),

5 2 â€”N > C

S

D ov\koiAo c34 k(s) s I

or s s c–, IrR

li,Cg Cs))

MST129 – Applied Calculus 2021-2022 / Fall 3

Q-2: [2+3 marks] Solve for x the following equations:

a) 1+:e-x = 3′ b) 2 2 xâ€” 6 â€¢ 2′ + 8 = 0.

3 Z

A

b.) De-z- 6. ozx (-me o

MST129 – Applied Calculus

2021-2022 / Fall 4

Q-3: [3+2 marks] a) At what points on the graph of f (x) = (x â€” 1) (x 2 â€” 8x + 7) the tangent

lines are horizontal.

b) Find an equation of the tangent line to the curve y = 1-x3 at x = 0.

d 0 d 2

(x 2 – + – 4 1-)

L> 2 -2 CZ-Â±)( g)1

_g x -62x+8 oZz a z

2-8z 4-2X 2- -110X_ -. S 3X 2 le

Fo tA5-kys hAdA irowvcrivvi– vJ yvt_itor- câ€˜g-KAic cift,;v01 /4A-ve. 31 O â€¢

3x z_igz –â‚¬ 1.6’=0 Cz z – 67 z_

3 (z–f)Cz-)–0

oti -1C=-0

:= al

lS 1,1,014 zovvtrof,

MST129 – Applied Calculus 2021-2022 / Fall 5

b)

d fix)1 dz g (z)

x 0

d _ goo.)

(q(2C))L

h-z)=022c-i 9 (x):=1- z5

= dz (zx -1)(1 -z; (2x _z_)

1-z3Diz

oz 32c_ Lcozg_-1)

-z’ 3

– z –

26- â€” 2,r3

qX â€” 3X 4 c2 26 6 â€” p2, X-3

04- Hite duviktakive. 0

2c 3 â€” 3z C -t- 2 –

co) 3- 3ae c2 Co) â€” 2(0)’K +

=

= (k k(x4-1(0)(Ci t

J-

z (x-+ I/0 (a. tlz-4

( X \ – – A )

â€”1 /c1/AA kâ€”> 0

Q-4: [5 marks] Let f (x) = . Use the definition of the derivative to find r (x)

4,,AA4 Jo( h) – i(x)

kix

\fT- . \izkft)

z-nf- t4. \r-z7 \ i242c fx t kL.

_

4;\AA ift

/CAM

k–>o -t-4 xÃ· k Cx-t-ii0)(j ta:70q)

d.

MST129 – Applied Calculus 2021-2022 / Fall

–t- -A- -V

Q-5: [3+2 marks] Let g(t) t 21+1 42+1)2′ a) Find the intervals on which g is increasing or decreasing. b) Find the local maximum and minimum of f, if any.

ivt_s 6zp5voYiov, 9 ( t i

9C-i) Lci (624/) 2 – cf2,_ c-c+j)? (-t 2+1)

-F- (-Ea+)2 (-Ea 4- 11-

a) ‘co ‘C4t*a \Acz_ â€˜â€˜â€˜Nc-Rxvo-ts iirtc^ce_0./)7iVq \r\pe vie e8 c() ‘C/I:v\c) (1-k c_76(–icc4 0,0 -Ws t

i-Age 6 â‚¬, NAâ€˜rci-

.9 1 06) al-Lb C6 z) tt[( CL-4- 1-)1

Cta -1-1 ) 2- 2

Fi. i4c)vizg z,e71,0s d 4-vv d_uâ€˜’,tvcd,i CS-Cvi CalvvoAvors)

(-( (-Ez+V

G) w5k”–futkcK lrâ€¢k iyvic-trVok.ks lc-04kt’ s: â€”OD 0 1 too

(-11 0) ( 0 i) L i, 00) –

co AclAs 1â€˜ ow

–11 3CC.4_1)+2-t C-C-1-15 1)L,

(La + 1)3

9 et) \vicreases

(0, 1) ct) de_crect se s

(–i(0)(1-( 00 )

0 G

2

MST129 – Applied Calculus 2021-2022 / Fall 7

19) c i Vice we, Vvw\re c_s \’1)\fk.e_

CilAil”CO-1 1> 01 \IS of C-E) wc (GAN c culcdre \ cal VVt ax; \Mat ON\ (i LAA:uMWtq

c Y i â€¢ P Â°I t

(–oz SC â€”

(e’-1)1 –f-1)

( )2- 9 co)

(i)z

C-0 ha

-7K– lociLl 141 a A i’vw? CO- 1

i

-C4 (c)cal tAAA vIA mot (0

C)

Q-6: [5 marks] For the given shape (half a circle on top of a rectangle), find x such

that its circumference is 14 and area is maximum.

Obi e c elfikaMOAA

= z Tr7(- covowv\s/vAc eJwatio-,â€ž

-f- 02z T- 2C1 2x

sw\it’vg opyvAct&A’c– k-ke a-6,ecH e vci,k ov\

c k z tTrx =1(.( lq-2z-rr

02_ -9 – -2_1″

2, c 1-1 eq/ Qa h’64-1(1 6:6aywif

A = 02,z x

gzzz p-z2-

viz ,,,2 2_

a(- –2-jr

Cal6ct(aVNI9 A/ am d t k

Ai

/4’1 = skâ€˜1/\.c ‘c\kB 1-\(\e (M-s( co-( poi Fs c5E ‘â€¢

/ t i â€” (-(X- -Trz

= – R1 – _

MST129 – Applied Calculus 2021-2022 / Fall

1h

k 01 /4AAci suu6sH-4e_

8

covv.SAASio ti

Q-7: [3+2 marks] a) let f(x) x. Using the second derivative test find the local extrema of f. e 2x

b) Find IL’ in terms of x if e2x +e2Y = 4. dx

t(2c) cam -6e frCe.W9-(ilett-eAA 73_ e -ozz

covtcut-tcui.vn Pae (FY4. pcx ) d S-gz) e Â± (3 – qx) Cax. ,

– -Ozz dz

–c e”Â°Zz ,z( 3 -4 iz)e”Z

– ciz –c)e-02x Se_COVIA C/1/; voAive

qz)C-c2zi= 84- c z cc(z_)ecz

Cv2-__q)c-Â°21z

c4(11z-q) oacqz

ge-Ì€ 2 z

(02g ot 4-ndivi9 tht

Clag -_16x)e-2

oo

6 ccaco1 c6–1’titg (j z d’x-

L( 3 –

-0 0 2g -142( () e ozz

-16X -a – 28 oo

iv11.-e rya_ oo, 1 â€¢ 5)

â€”2 since exist – a locctA ex hie VV\ WA\

C-Ine_AA f(z) has a ( occtif .e)( –revvâ€˜A.Wvii aizA 5-

2_

0-0

f t -k â€” â€”

MST129 – Applied Calculus 2021-2022 / Fall 9

2z

ay

2x-

dy

-e

e t e zy =’t

e ar- t e ay 0/3

f az\ 87cL e cf-Tc

,d5 CC 293,

-> c’zz ei2Y d9 ( x_

26 2Ì€. (JO 0

icy) â€”

7 1_31. 75./w ifm( 7â€¢-z)

x a-

02. -eme. 4( z 3) – -(AAC z a )

dlc _zz_-1/6(x3)_14,\Aci+2_-L))

2- 3 2_ ( e-a

x – (02-X 3Y E–

z.

e 2x (2_x3)312

Q-8: [5 marks] Using the logarithmic differentiation, find -Ì€ 1- of y = / dx )

/ctA (t3)=_ /cvl 6-oz- 4w (02- 3.1z -CAA/1 ii-t-xaD k

MST129 – Applied Calculus 2021-2022 / Fall 10

• Page 1
• Page 2
• Page 3
• Page 4
• Page 5
• Page 6
• Page 7
• Page 8
• Page 9
• Page 10
• Page 11

Order your essay today and save 10% with the discount code ESSAYHELP