+1 (208) 254-6996 [email protected]
  

Use the attached document to complete the following assignment. 

Find three research articles in your chapter 2.

Don't use plagiarized sources. Get Your Custom Essay on
Synthesis Of Articles, Question And Analysis
Just from $13/Page
Order Essay

1. Identify the problem being solved/addressed.

2. Write the research questions, sources of data, and analysis.

Pay particular attention to the problem being solved.  

Note: Your initial post will be your answer to the Question and is to be 250 words with at least 2 references for each article. If supporting evidence from outside resources is used those must be properly cited. The initial post will be graded on length, content, grammar and use of references. References should always be below each question as they are a different topic and not related in any way. 

Research questionSources of data to answer questionAnalysis
EXAMPLEWhat is the relationship between teacher use of formative assessment practices and student achievement based on grade level?Teacher survey: Self-reported use of assessment practices using a Likert-type scale to measure frequency of use.Student achievement will be reported in aggregate at the classroom level.Two-way ANOVAbecause there are two IVsFormativeComparison3rd4th5th
Research question(s)Sources of data to answer questionAnalysis
Article 1: Problem being addressed
Article 1 questions
Article 2: Problem being addressed
Article 2 questions
Article 3: Problem being addressed
Article 3

1

45

References

Baresi, L., & Garriga, M. (2019). Microservices: The Evolution and Extinction of Web Services? Microservices, 3–28. https://doi.org/10.1007/978-3-030-31646-4_1

Baškarada, S., Nguyen, V., & Koronios, A. (2018). Architecting Microservices: Practical Opportunities and Challenges. Journal of Computer Information Systems, 1–9. https://doi.org/10.1080/08874417.2018.1520056

Berman, E. (2017). An Exploratory Sequential Mixed Methods Approach to Understanding Researchers’ Data Management Practices at UVM: Findings from the Quantitative Phase. Journal of EScience Librarianship6(1), e1098. https://doi.org/10.7191/jeslib.2017.1098

Brogi, A., Neri, D., & Soldani, J. (2018). A microservice-based architecture for (customizable) analyses of Docker images. Software: Practice and Experience48(8), 1461–1474. https://doi.org/10.1002/spe.2583

Celozzi, C. (2020, December 2). How Door Dash transitioned from a code monolith to microservices. Door Dash Engineering Blog. https://doordash.engineering/2020/12/02/how-doordash-transitioned-from-a-monolith-to-microservices/

Di Francesco, P., Lago, P., & Malavolta, I. (2019). Architecting with microservices: A systematic mapping study. Journal of Systems and Software150, 77–97. https://doi.org/10.1016/j.jss.2019.01.001

Habadi, A., Samih, Y., Almehdar, K., & Aljedani, E. (2017). An Introduction to ERP Systems: Architecture, Implementation, and Impacts. International Journal of Computer Applications167(9), 1–4. https://doi.org/10.5120/ijca2017914322

Kazanavičius, J., & Mažeika, D. (2019, April 1). I am migrating Legacy Software to Microservices Architecture. IEEE Xplore. https://doi.org/10.1109/eStream.2019.8732170

Khazaei, H., Barna, C., Beigi-Mohammadi, N., & Litoiu, M. (2016). Efficiency Analysis of Provisioning Microservices. 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). https://doi.org/10.1109/cloudcom.2016.0051

Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., & Kalinowski, M. (2021). Data Management in Microservices: State of the Practice, Challenges, and Research Directions. ArXiv: 2103.00170 [Cs]. https://arxiv.org/abs/2103.00170

Nawaz, N., & Channakeshavalu. (2013). The Impact of Enterprise Resource Planning (ERP) Systems Implementation on Business Performance. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3525298

Plutora. (2019, June 28). Understanding Microservices and Their Impact on Companies. Plutora. https://www.plutora.com/blog/understanding-microservices

Sampaio, A. R., Rubin, J., Beschastnikh, I., & Rosa, N. S. (2019). Improving microservice-based applications with runtime placement adaptation. Journal of Internet Services and Applications10(1). https://doi.org/10.1186/s13174-019-0104-0

Sandoe, K., & Olfman, L. (1992). Anticipating the mnemonic shift: Organizational remembering and forgetting in 2001. INTERNATIONAL CONFERENCE on INFORMATION SYSTEMS (ICIS), 1–12. https://core.ac.uk/download/pdf/301364184.pdf

Singh, V., & K Peddoju, S. (2017). Container-based microservice architecture for cloud applications. International Conference on Computing, Communication, and Automation (ICCCA), 847–852. https://doi.org/10.1109/CCAA.2017.8229914.

Siong Choy, C., & Yong Suk, C. (2005). Critical Factors In The Successful Implementation Of Knowledge Management. Journal of Knowledge Management Practice6(1), 234–258. http://www.tlainc.com/articl90.htm

Stubbs, J., Moreira, W., & Dooley, R. (2015, June 1). Distributed Systems of Microservices Using Docker and Serfnode. IEEE Xplore; 7th International Workshop on Science Gateways, Budapest, Hungary. https://doi.org/10.1109/IWSG.2015.16

J. Stubbs, W. Moreira and R. Dooley, “Distributed Systems of Microservices Using Docker and Serfnode,” 2015 7th International Workshop on Science Gateways, Budapest, Hungary, 2015, pp. 34-39, doi: 10.1109/IWSG.2015.16.

Swoyer, M. L., Steve. (2020, July 15). Microservices Adoption in 2020. O’Reilly Media. https://www.oreilly.com/radar/microservices-adoption-in-2020/

Tapia, F., Mora, M. Á., Fuertes, W., Aules, H., Flores, E., & Toulkeridis, T. (2020). From Monolithic Systems to Microservices: A Comparative Study of Performance. Applied Sciences10(17), 5797. https://doi.org/10.3390/app10175797

Villamizar, M., Garces, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., Casallas, R., Gil, S., Valencia, C., Zambrano, A., & Lang, M. (2016). Infrastructure Cost Comparison of Running Web Applications in the Cloud Using AWS Lambda and Monolithic and Microservice Architectures. 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). https://doi.org/10.1109/ccgrid.2016.37

Vrîncianu, M., Anica-Popa, L., & Anica-Popa, I. (2009). Organizational Memory: an Approach from Knowledge Management and Quality Management of Organizational Learning Perspectives. The AMFITEATRU ECONOMIC Journal11(26), 473–481. https://ideas.repec.org/a/aes/amfeco/v11y2009i26p473-482.html

Baboi, M., Iftene, A., & Gîfu, D. (2019). Dynamic Microservices to Create Scalable and Fault Tolerance Architecture. Procedia Computer Science159, 1035–1044. https://doi.org/10.1016/j.procs.2019.09.271

CHAN JIANLI1, D., AL-RASHDAN, M., & AL-MAATOUK, Q. (2020). SECURE DATA STORAGE SYSTEM. Journal of Critical Reviews7(03). https://doi.org/10.31838/jcr.07.03.18

Al-Debagy, O., & Martinek, P. (2019). A Comparative Review of Microservices and Monolithic Architectures. ArXiv:1905.07997 [Cs]. http://arxiv.org/abs/1905.07997

AL-Mandi, M. A., & AL-Sharjabi, A. (2020, December 1). Level of Effectiveness for ERP System in Improving the Educational Process in Higher Education Institutions in Yemen: A Case Study of the University of Science and Technology. المجلة العربية لضمان جودة التعليم الجامعي. https://doaj.org/article/e2f955aaa2d34ae9af4ec375d9db8cb7

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D. A., & Lynn, T. (2018). Microservices migration patterns. Software: Practice and Experience. https://doi.org/10.1002/spe.2608

Bergquist, N. R. (2001). A concept for the collection, consolidation and presentation of epidemiological data. Acta Tropica79(1), 3–5. https://doi.org/10.1016/s0001-706x(01)00132-2

Bhandary, A., & Maslach, D. (2018). Organizational Memory. The Palgrave Encyclopedia of Strategic Management, 1219–1223. https://doi.org/10.1057/978-1-137-00772-8_210

Bindley, P. (2019). Joining the dots: how to approach compliance and data governance. Network Security2019(2), 14–16. https://doi.org/10.1016/s1353-4858(19)30023-6

Boniecki, R., & Rawłuszko, J. (2018). ON THE DEVELOPMENT OF THE ERP SYSTEM IN THE PROCESSING-TRANSPORTING ENTERPRISES. Ekonomiczne Problemy Usług131, 49–56. https://doi.org/10.18276/epu.2018.131/1-05

Booth, C., & Rowlinson, M. (2006). Management and organizational history: Prospects. Management & Organizational History1(1), 5–30. https://doi.org/10.1177/1744935906060627

Borgerud, C., & Borglund, E. (2020). Correction to: Open research data, an archival challenge? Archival Science. https://doi.org/10.1007/s10502-020-09335-y

Bose, R. (2006). Understanding management data systems for enterprise performance management. Industrial Management & Data Systems106(1), 43–59. https://doi.org/10.1108/02635570610640988

Bruno, G. (2014). A Data-flow Language for Business Process Models. Procedia Technology16, 128–137. https://doi.org/10.1016/j.protcy.2014.10.076

Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., & Mazzara, M. (2018). From Monolithic to Microservices: An Experience Report from the Banking Domain. IEEE Software35(3), 50–55. https://doi.org/10.1109/ms.2018.2141026

Bukari Zakaria, H., & Mamman, A. (2014). Where is the Organisational Memory? A Tale of Local Government Employees in Ghana. Public Organization Review15(2), 267–279. https://doi.org/10.1007/s11115-014-0271-1

C. PRIYA, C. P. (2011). Need Based Technology for Innovation. Indian Journal of Applied Research4(4), 19–20. https://doi.org/10.15373/2249555x/apr2014/251

Cho, Y.-T., & Kim, I. (2014). The Difference Analyses between Users’ Actual Usage and Perceived Preference: The Case of ERP Functions on Legacy Systems. The Journal of Information Systems23(1), 185–202. https://doi.org/10.5859/kais.2014.23.1.185

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L. (2017). Microservices: Yesterday, Today, and Tomorrow. Present and Ulterior Software Engineering, 195–216. https://doi.org/10.1007/978-3-319-67425-4_12

Ehrhart, M. G., Aarons, G. A., & Farahnak, L. R. (2015). Going above and beyond for implementation: the development and validity testing of the Implementation Citizenship Behavior Scale (ICBS). Implementation Science10(1). https://doi.org/10.1186/s13012-015-0255-8

Escobar, D., Cardenas, D., Amarillo, R., Castro, E., Garces, K., Parra, C., & Casallas, R. (2016). Towards the understanding and evolution of monolithic applications as microservices. 2016 XLII Latin American Computing Conference (CLEI). https://doi.org/10.1109/clei.2016.7833410

Esposito, C. (2018). Interoperable, dynamic and privacy-preserving access control for cloud data storage when integrating heterogeneous organizations. Journal of Network and Computer Applications108, 124–136. https://doi.org/10.1016/j.jnca.2018.01.017

Ferrari, E. (2010). Access Control in Data Management Systems. Synthesis Lectures on Data Management2(1), 1–117. https://doi.org/10.2200/s00281ed1v01y201005dtm004

Fujita, T., & Ogawara, M. (2005). Arbre: A File System for Untrusted Remote Block-level Storage. IPSJ Digital Courier1, 381–393. https://doi.org/10.2197/ipsjdc.1.381

Gao, M., Chen, M., Liu, A., Ip, W. H., & Yung, K. L. (2020). Optimization of Microservice Composition Based on Artificial Immune Algorithm Considering Fuzziness and User Preference. IEEE Access8, 26385–26404. https://doi.org/10.1109/access.2020.2971379

Gerber, M., & von Solms, R. (2008). Information security requirements – Interpreting the legal aspects. Computers & Security27(5-6), 124–135. https://doi.org/10.1016/j.cose.2008.07.009

Giacalone, M., Cusatelli, C., & Santarcangelo, V. (2018). Big Data Compliance for Innovative Clinical Models. Big Data Research12, 35–40. https://doi.org/10.1016/j.bdr.2018.02.001

Herrmann, F. (2016). Using Optimization Models for Scheduling in Enterprise Resource Planning Systems. Systems4(1), 15. https://doi.org/10.3390/systems4010015

Hujda, K., Marineau, C., & Wick, A. (2016). Maximum Product, Even Less Process: Increasing Efficiencies in Archival Processing Using ArchivesSpace. Journal of Archival Organization13(3-4), 100–113. https://doi.org/10.1080/15332748.2018.1443549

Hunter, J., & Cheung, K. (2007). Provenance Explorer-a graphical interface for constructing scientific publication packages from provenance trails. International Journal on Digital Libraries7(1-2), 99–107. https://doi.org/10.1007/s00799-007-0018-5

Jiang, L., Xu, L. D., Cai, H., Jiang, Z., Bu, F., & Xu, B. (2014). An IoT-Oriented Data Storage Framework in Cloud Computing Platform. IEEE Transactions on Industrial Informatics10(2), 1443–1451. https://doi.org/10.1109/tii.2014.2306384

Johansson, B. (2012). Exploring how open source ERP systems development impact ERP systems diffusion. International Journal of Business and Systems Research6(4), 361. https://doi.org/10.1504/ijbsr.2012.049468

K S, G., & T, Prof. P. (2019). A Better Solution Towards Microservices Communication In Web Application: A Survey. International Journal of Innovative Research in Computer Science & Technology7(3), 71–74. https://doi.org/10.21276/ijircst.2019.7.3.7

Kaufmann, E., Favretto, J., Filippim, E. S., & Cohen, E. D. (2018). Relationship Between The Organizational Memory and Innovativity: The Case of Software Development Companies in The Southern Region of Brazil. Journal of Information Systems and Technology Management16. https://doi.org/10.4301/S1807-1775201916004

Khidzir, N. Z., & Ahmed, S. A.-A.-M. (2018). Big Data Digital Evidences Integrity: Issues, Challenges and Opportunities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3227714

Kilchenmann, A., Laurens, F., & Rosenthaler, L. (2019). Digitizing, archiving… and then? Ideas about the usability of a digital archive. Archiving Conference2019(1), 146–150. https://doi.org/10.2352/issn.2168-3204.2019.1.0.34

Killalea, T. (2016). The hidden dividends of microservices. Communications of the ACM59(8), 42–45. https://doi.org/10.1145/2948985

Kornei, K. (2019). More Than a Million New Earthquakes Spotted in Archival Data. Eos100. https://doi.org/10.1029/2019eo121757

Kumari, S., Archana, A., Shree, K., Ashwini, A., & M, C. (2019). EFFICIENT BLOCK-WISE IMAGE COMPARISON AND STORAGE REDUCTION USING DICE PROTOCOL. International Journal of Current Engineering and Scientific Research6(6), 175–181. https://doi.org/10.21276/ijcesr.2019.6.6.30

Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., & Kalinowski, M. (2021). Data Management in Microservices: State of the Practice, Challenges, and Research Directions. ArXiv:2103.00170 [Cs]. http://arxiv.org/abs/2103.00170

Langos, C., & Giancaspro, M. (2015). Does Cloud Storage Lend Itself to Cyberbullying? IEEE Cloud Computing2(5), 70–74. https://doi.org/10.1109/mcc.2015.102

LaPolla, F. W. Z., & Rubin, D. (2018). The “Data Visualization Clinic”: a library-led critique workshop for data visualization. Journal of the Medical Library Association106(4). https://doi.org/10.5195/jmla.2018.333

Lee, N. C.-A., & Chang, J. Y. T. (2020). Adapting ERP Systems in the Post-implementation Stage: Dynamic IT Capabilities for ERP. Pacific Asia Journal of the Association for Information Systems, 28–59. https://doi.org/10.17705/1pais.12102

Leonhardt, J. M., Trafimow, D., & Niculescu, M. (2016). Selecting Field Experiment Locations with Archival Data. Journal of Consumer Affairs51(2), 448–462. https://doi.org/10.1111/joca.12117

Linger, H., Burstein, F., Zaslavsky, A., & Crofts, N. (1999). A Framework for a Dynamic Organizational Memory Information System. Journal of Organizational Computing and Electronic Commerce9(2), 189–203. https://doi.org/10.1207/s15327744joce0902&3_6

Maas, J.-B., van Fenema, P. C., & Soeters, J. (2014). ERP system usage: the role of control and empowerment. New Technology, Work and Employment29(1), 88–103. https://doi.org/10.1111/ntwe.12021

Marcinauskas, E. (2021, March 1). Research of ERP System integration into Lean Manufacturing. Mokslas: Lietuvos Ateitis. https://doaj.org/article/a6fb6fe1b19d488eb599c8a7b3fd47f1

Marquez, G., Taramasco, C., Astudillo, H., Zalc, V., & Istrate, D. (2021). Involving Stakeholders in the Implementation of Microservice-Based Systems: A Case Study in an Ambient-Assisted Living System. IEEE Access9, 9411–9428. https://doi.org/10.1109/access.2021.3049444

Mateus-Coelho, N., Cruz-Cunha, M., & Ferreira, L. G. (2021). Security in Microservices Architectures. Procedia Computer Science181, 1225–1236. https://doi.org/10.1016/j.procs.2021.01.320

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of Microservices from Monolithic Software Architectures. 2017 IEEE International Conference on Web Services (ICWS). https://doi.org/10.1109/icws.2017.61

Milosch, J. C. (2014). Provenance: Not the Problem (The Solution). Collections10(3), 255–264. https://doi.org/10.1177/155019061401000304

Molchanov, H., & Zhmaiev, A. (2018). CIRCUIT BREAKER IN SYSTEMS BASED ON MICROSERVICES ARCHITECTURE. Advanced Information Systems2(4), 74–77. https://doi.org/10.20998/2522-9052.2018.4.13

Montesi, F., Peressotti, M., & Picotti, V. (2021). Sliceable Monolith: Monolith First, Microservices Later. ArXiv:2103.09518 [Cs]. http://arxiv.org/abs/2103.09518

Mosleh, M., Dalili, K., & Heydari, B. (2018). Distributed or Monolithic? A Computational Architecture Decision Framework. IEEE Systems Journal12(1), 125–136. https://doi.org/10.1109/jsyst.2016.2594290

Narayanan, H. T. S. (2020). Contact Tracing Proximity Data Exchange and Consolidation with App Design. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3691834

Neubert, S., Geißler, A., Roddelkopf, T., Stoll, R., Sandmann, K.-H., Neumann, J., & Thurow, K. (2019). Multi-Sensor-Fusion Approach for a Data-Science-Oriented Preventive Health Management System: Concept and Development of a Decentralized Data Collection Approach for Heterogeneous Data Sources. International Journal of Telemedicine and Applications2019, 1–18. https://doi.org/10.1155/2019/9864246

Niu, J. (2014). Original order in the digital world. Archives and Manuscripts43(1), 61–72. https://doi.org/10.1080/01576895.2014.958863

Oberle, M. C., & Dreiss, P. (2018). Design and Implementation of a Cyber-Physical Production System for Personalized Skin Care: A Microservices Approach. International Journal of Materials, Mechanics and Manufacturing6(4), 295–302. https://doi.org/10.18178/ijmmm.2018.6.4.395

Олещенко, Л. М., & Глінський, В. В. (2017). Microservices system architecture video search vehicles that are wanted in connection of their misappropriation. Problems of Informatization and Management1(57-58). https://doi.org/10.18372/2073-4751.1.12794

Onggo, B. S. S., & Hill, J. (2014). Data identification and data collection methods in simulation: a case study at ORH Ltd. Journal of Simulation8(3), 195–205. https://doi.org/10.1057/jos.2013.28

Perez, G., & Ramos, I. (2013). Understanding Organizational Memory from the Integrated Management Systems (ERP). Journal of Information Systems and Technology Management10(3), 541–560. https://doi.org/10.4301/s1807-17752013000300005

Pylypenko, L., & Redko, M. (2019). ANALYSIS OF THE ADVANTAGES AND DISADVANTAGES OF ERP SYSTEM IMPLEMENTATION IN ENTERPRISES. Pryazovskyi Economic Herald6(17). https://doi.org/10.32840/2522-4263/2019-6-33

Rangus, K., & Slavec, A. (2017). The interplay of decentralization, employee involvement and absorptive capacity on firms’ innovation and business performance. Technological Forecasting and Social Change120, 195–203. https://doi.org/10.1016/j.techfore.2016.12.017

Ribeiro, F. (2001). Archival science and changes in the paradigm. Archival Science1(3), 295–310. https://doi.org/10.1007/bf02437693

Roth, G., & Kleiner, A. (1998). Developing organizational memory through learning histories. Organizational Dynamics27(2), 43–60. https://doi.org/10.1016/s0090-2616(98)90023-7

S, M., & Sathayanarayana, S. (2018). Enhanced Big Data Platform for Visualization of Employee Data. JOIV : International Journal on Informatics Visualization2(3), 169. https://doi.org/10.30630/joiv.2.3.132

S, Monisha., & Venkateshkumar, Dr. S. (2018). Cloud Computing in Data Backup and Data Recovery. International Journal of Trend in Scientific Research and DevelopmentVolume-2(Issue-6), 865–867. https://doi.org/10.31142/ijtsrd18652

Sangat, P., Indrawan-Santiago, M., & Taniar, D. (2017). Sensor data management in the cloud: Data storage, data ingestion, and data retrieval. Concurrency and Computation: Practice and Experience30(1), e4354. https://doi.org/10.1002/cpe.4354

Schafer, G. (2004). Security in data communications: Security in Fixed and Wireless Networks – An introduction to securing data communications. Computer Law & Security Review20(5), 431. https://doi.org/10.1016/s0267-3649(04)00081-0

Senko, M. E. (1977). Data structures and data accessing in data base systems past, present, future. IBM Systems Journal16(3), 208–257. https://doi.org/10.1147/sj.163.0208

Sergeant, A. M. A., & Sergeant, C. S. (2010). Hidden costs of data storage. Journal of Corporate Accounting & Finance21(5), 41–47. https://doi.org/10.1002/jcaf.20610

Slamaa, A. A., El-Ghareeb, H. A., & Saleh, A. A. (2021). A Roadmap for Migration System-Architecture Decision by Neutrosophic-ANP and Benchmark for Enterprise Resource Planning Systems. IEEE Access9, 48583–48604. https://doi.org/10.1109/access.2021.3068837

Stokes, T. (2012, October 12). 12. Provenance and Original Order – GXP International. Gxpinternational. https://gxpinternational.com/provenance-original-order/

Sultan, M. (2020). Linking Stakeholders’ Viewpoint Concerns and Microservices-based Architecture. ArXiv:2009.01702 [Cs]. http://arxiv.org/abs/2009.01702

Suresh, S. (2012). Global challenges need global solutions. Nature490(7420), 337–338. https://doi.org/10.1038/490337a

Tapia, F., Mora, M. Á., Fuertes, W., Aules, H., Flores, E., & Toulkeridis, T. (2020, August 1). From Monolithic Systems to Microservices: A Comparative Study of Performance. Applied Sciences. https://doaj.org/article/a0df93c43ef04d40a39a81c1f773cc68

Tognoli, N. B., & Guimarães, J. A. C. (2018). Provenance. Www.isko.org. https://www.isko.org/cyclo/provenance

Vans, M., Simske, S., & Scott, Jr., W. (2018). Archiving Information Workflows. Archiving Conference2018(1), 75–76. https://doi.org/10.2352/issn.2168-3204.2018.1.0.17

Venugopal, M. V. L. N. (2017). Containerized Microservices architecture. International Journal of Engineering and Computer Science6(11). https://doi.org/10.18535/ijecs/v6i11.20

Villamizar, M., Garces, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., & Gil, S. (2015). Evaluating the monolithic and the microservice architecture pattern to deploy web applications in the cloud. 2015 10th Computing Colombian Conference (10CCC). https://doi.org/10.1109/columbiancc.2015.7333476

Wickramasinghe, V., & Gunawardena, V. (2010). Effects of people-centred factors on enterprise resource planning implementation project success: empirical evidence from Sri Lanka. Enterprise Information Systems4(3), 311–328. https://doi.org/10.1080/17517570903576413

XIE, H., & CHEN, X. (2013). Cloud storage-oriented unstructured data storage. Journal of Computer Applications32(6), 1924–1928. https://doi.org/10.3724/sp.j.1087.2012.01924

Yi, Z., Meilin, W., RenYuan, C., YangShuai, W., & Jiao, W. (2019). Research on Application of SME Manufacturing Cloud Platform Based on Micro Service Architecture. Procedia CIRP83, 596–600. https://doi.org/10.1016/j.procir.2019.04.091

Yousif, M. (2016). Microservices. IEEE Cloud Computing3(5), 4–5. https://doi.org/10.1109/mcc.2016.101

Yuhuan, Q. (2017). Cloud Storage Technology. Big Data and Cloud Innovation1(1). https://doi.org/10.18063/bdci.v1i1.508

Zhao, Y., Zhang, X., Xu, X., & Zhang, S. (2020). Development of composite phase change cold storage material and its application in vaccine cold storage equipment. Journal of Energy Storage30, 101455. https://doi.org/10.1016/j.est.2020.101455

Order your essay today and save 10% with the discount code ESSAYHELP